Issue 2, 2022

Proton binding to humic nano particles: electrostatic interaction and the condensation approximation

Abstract

Proton binding to “carboxylic” and “phenolic” sites of humic nano particles (HNPs) is determined by the total proton affinity that is due to a specific and an electrostatic affinity. Both affinities are accounted for in the bi-modal Langmuir–Freundlich (bi-LF)-equation extended with a Boltzmann factor that includes the electrostatic site potential(s), y. For y → 0 the equation reduces to the bi-LF Master Curve (MC). Commonly, an electrical double layer model is used to obtain y, e.g., the bi-LF-Donnan-Vapp (monocomponent NICA-Donnan) model and bi-LF-soft-particle-Poison–Boltzmann-Theory (SPBT). A new method is presented that combines the “condensation approximation” (CA) with the MC concept (CA-MC). With the CA, the proton binding curve and MC can be transformed in, respectively, the total and specific affinity distribution. The difference at a given charge density provides the electrostatic affinity and CA-potentials vs. charge density. The MC can be obtained theoretically or by using the convention that the electrostatic interaction is negligible at 1 M salt concentration. For five HNPs CA-potentials corresponding with the bi-LF-SPBT are compared with results of the bi-LF-Donnan-Vapp model using the MC(SPBT). The bi-LF-Donnan-Vapp model fails when the Debye length > hydrated particle radius. The CA-MC(1M) method does not require characteristics of the HNPs. Combination of the bi-LF-eq. with the CA-MC(1 M) method gives the bi-LF-CA-MC(1 M) model. The CA-MC(1 M) differs from the MC(SPBT); therefore, resulting parameters can only be compared when the same method is used.

Graphical abstract: Proton binding to humic nano particles: electrostatic interaction and the condensation approximation

Supplementary files

Article information

Article type
Paper
Submitted
29 Sep 2021
Accepted
09 Dec 2021
First published
09 Dec 2021

Phys. Chem. Chem. Phys., 2022,24, 704-714

Proton binding to humic nano particles: electrostatic interaction and the condensation approximation

L. Koopal, J. Xiong, W. Tan, T. Saito and M. Avena, Phys. Chem. Chem. Phys., 2022, 24, 704 DOI: 10.1039/D1CP04470B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements