Multidimensional H-atom tunneling in the catecholate monoanion†
Abstract
We present the catecholate monoanion as a new model system for the study of multidimensional tunneling. It has a symmetrical O–H double-well structure, and the H atom motion between the two wells is coupled to both low and high frequency modes with different strengths. With a view to studying mode-specific tunneling in the catecholate monoanion, we have developed a full (33) dimensional potential energy surface in transition state (TS) normal modes using a Distributed Gaussian Empirical Valence Bond (DGEVB) based approach. We have computed eigenstates in different subspaces using both unrelaxed and relaxed potentials based on the DGEVB model. With unrelaxed potentials, we present results up to 7D subspaces that include the imaginary frequency mode and six modes coupled to it. With relaxed potentials, we focus on the two most important coupling modes. The structures of the ground and vibrationally excited eigenstates are discussed for both approaches and mode-specific tunneling splitting and their trends are presented.