Issue 20, 2022

Microwave spectra, molecular geometries, and internal rotation of CH3 in N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O Complexes

Abstract

Broadband microwave spectra have been recorded between 7.0 and 18.5 GHz for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O complexes. Each complex was generated by co-expansion of low concentrations of methylimidazole and H2O in argon buffer gas. The rotational spectra of five isotopologues of each complex have been assigned and analysed to determine rotational constants (A0, B0, C0), centrifugal distortion constants (DJ, DJK) and parameters that describe the internal rotation of the CH3 group. The results allow the determination of parameters in the (r0) molecular geometry of each complex. H2O is the hydrogen bond donor and the pyridinic nitrogen of imidazole is the hydrogen bond acceptor in each case. The ∠(O–Hb⋯N3) angles are 177(5)° and 166.3(28)° for N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O respectively. These results are consistent with the presence of a weak electrostatic interaction between the oxygen atom of H2O and the hydrogen atom (or CH3 group) attached to the C2 carbon atom of imidazole, and with the results of density functional theory calculations. The (V3) barrier to internal rotation of the CH3 group within N-methylimidazole⋯H2O is essentially unchanged from the value of this parameter for the N-methylimidazole monomer. The same parameter is significantly higher for the 2-methylimidazole⋯H2O complex than for the 2-methylimidazole monomer as a consequence of the weak electrostatic interaction between the O atom and the CH3 group of 2-methylimidazole.

Graphical abstract: Microwave spectra, molecular geometries, and internal rotation of CH3 in N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O Complexes

Supplementary files

Article information

Article type
Paper
Submitted
03 Dec 2021
Accepted
02 May 2022
First published
06 May 2022
This article is Open Access
Creative Commons BY license

Phys. Chem. Chem. Phys., 2022,24, 12354-12362

Microwave spectra, molecular geometries, and internal rotation of CH3 in N-methylimidazole⋯H2O and 2-methylimidazole⋯H2O Complexes

E. Gougoula, C. N. Cummings, C. Medcraft, J. Heitkämper and N. R. Walker, Phys. Chem. Chem. Phys., 2022, 24, 12354 DOI: 10.1039/D1CP05526G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements