Issue 10, 2022

Exploring the permeability of covid-19 drugs within the cellular membrane: a molecular dynamics simulation study

Abstract

The diffusion of drugs into the cellular membrane is an important step in the drug delivery systems. Furthermore, predicting the interaction and permeability of drugs across the cellular membrane could help scientists to design bioavailable and high-efficient drugs. Discovering the COVID-19 drugs has recently drawn remarkable attention to tackle its outbreak. Due to the rapid replication of the coronavirus in the human body, searching for highly permeable drugs into the cellular membrane is vital. Herein, we performed the molecular dynamics (MD) simulation and density functional (DFT) calculations to investigate the permeability of keto and enol tautomers of the favipiravir (FAV) as well as hydroxychloroquine (HCQ) COVID-19 drugs into the cellular membrane. Our results reveal that though both keto and enol tautomers of the FAV are feasible to transfer through the cellular membrane, the keto form moves faster and diffuses deeper; however, the HCQ molecules aggregate in the water phase and remain near the cellular membrane. It is worth pointing out that the obtained results are consistent with the reactivity trends projected by the calculated reactivity descriptors of the considered drugs. Despite the pair correlation function and H-bond analyses revealing the interactions between the membrane and HCQ, the aggregation of the HCQ molecules resists their passage through the cellular membrane. Besides, the lower free energy barrier of FAV confirms its higher permeability than HCQ. These findings suggest that due to the deeper permeability of the FAV drug, its effectiveness can be more than that of HCQ. These molecular insights might help with a better understanding of the interactions between COVID-19 drugs and cellular membranes. Moreover, these theoretical findings could help experimental researchers find high-efficient strategies for COVID-19 therapy.

Graphical abstract: Exploring the permeability of covid-19 drugs within the cellular membrane: a molecular dynamics simulation study

Supplementary files

Article information

Article type
Paper
Submitted
05 Dec 2021
Accepted
07 Feb 2022
First published
08 Feb 2022

Phys. Chem. Chem. Phys., 2022,24, 6215-6224

Exploring the permeability of covid-19 drugs within the cellular membrane: a molecular dynamics simulation study

T. Ghaed-Sharaf and A. Omidvar, Phys. Chem. Chem. Phys., 2022, 24, 6215 DOI: 10.1039/D1CP05550J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements