Tunable Dirac states in doped B2S3 monolayers†
Abstract
Two-dimensional (2D) Dirac materials have been a research hotspot due to their intriguing properties, such as high carrier mobility and ballistic charge transport. Here, we demonstrate that the B2S3 monolayer with a hexagonal structure, which has been reported as a photocatalyst, can be tuned to new 2D Dirac materials by doping atoms. The Young's modulus can reach 65.23 N m−1, indicating that the monolayer can be used as a buffer materials. The electronic structures of the pristine B2S3 monolayer show that some Dirac points appear but do not occur exactly on the Fermi level (EF). Fortunately, we find that the Dirac cone can be tuned to the EF by doping C, N, or Sn atoms. The C-doped B2S3 monolayer can be a half-metallic Dirac material, which has significant potential application in spintronics. For N- and Sn-doped B2S3 monolayers, the typical kagome bands are formed near the EF, which arise from three molecular orbitals hybridized by B, S, and N (Sn) atoms. These outstanding properties render the doped B2S3 monolayers promising 2D Dirac materials for future nanoelectronic devices.