Improving the performance of inorganic perovskite solar cells via the perovskite quantum dot dynamically mediated film growth method†
Abstract
Perovskite quantum dots (PQDs) are promising interface modification materials for perovskite solar cells (PSCs). However, due to the limitation of the preparation method, it is hard to use PQDs as substrates for the growth of perovskite films by the common solution process. In this work, by introducing the rare earth element Ce into PQDs with the vacuum freezing and drying technology, we have successfully improved the solvent stability of PQDs. Moreover, we propose a technology, PQD dynamically mediated growth of perovskite film (PDMG), to prepare high-quality perovskite films, which can avoid the formation of PQD charge-blocking layers. Thanks to the improvement of perovskite crystallinity and the charge transport ability, the PCE is improved from 10.44% to 12.14% for CsPbI2Br PSCs and from 14.43% to 16.38% for CsPbI3 PSCs. Our work opens an avenue for using PQDs as substrates in the fabrication of highly efficient PSCs.