Localized surface plasmon resonances in a hybrid structure consisting of a mono-layered Al sheet and Ti3C2F MXene
Abstract
MXenes are a novel class of two-dimensional materials that exhibit unique light-matter interactions. In this work, using quantum-mechanical simulations based on the time dependent density functional theory, we investigate the electronic and optical properties of a hybrid structure consisting of a mono-layered aluminum (Al) sheet and Ti3C2F MXene. As a key result of this work, we reveal that the coupling of a mono-layered Al sheet on top of Ti3C2F MXene causes interlayer charge transfer accompanied by strong signatures of localized surface plasmon resonances (LSPRs) in the visible region of the electromagnetic spectrum. Our theoretical findings demonstrate a promising strategy to generate LSPRs in MXene-based heterostructures.