Full-dimensional quantum studies of vibrational energy transfer dynamics between H2O and Ar: theory assessing experiment
Abstract
We report the first full-dimensional quantum mechanical calculations of the ro-vibrational inelastic scattering dynamics between water molecules and argon atoms on an accurate potential energy surface, using a recently developed time-independent quantum method based on the close-coupling approach. The state-to-state integral cross-sections and rate coefficients show strong observance of gap laws. The calculated thermal rate coefficients for the relaxation of the stretching fundamental states of H2O are in good agreement with experimental values, while those for the bending overtone state are approximately five times smaller than the values extracted through a previous kinetic modeling of fluorescence decay data. Our state-specific quantum scattering results suggest the need to reassess the kinetic modeling of the experimental data. This work advanced our understanding of the quantum dynamics of vibrationally inelastic energy transfer processes involving polyatomic molecules.