Screening of transition metal single-atom catalysts supported by a WS2 monolayer for electrocatalytic nitrogen reduction reaction: insights from activity trend and descriptor†
Abstract
The electrocatalytic nitrogen reduction reaction (NRR), as an alternative green technology to the Haber–Bosch process, can efficiently synthesize ammonia under ambient conditions and has a reduced carbon footprint. Here we systematically investigate the NRR activity and selectivity of transition metal (TM) single-atom catalyst (SAC) anchored WS2 monolayers (TM@WS2) by means of first-principles calculations and microkinetic modeling. The construction of the reaction activity trend and the identification of an activity descriptor, namely *N2H adsorption energy, facilitate the efficient screening and rational design of SACs with high activity. Manipulating the adsorption strength of the pivotal *N2H intermediate is a potential strategy for enhancing NRR activity. Utilizing the limiting potential difference of NRR and the hydrogen evolution reaction (HER) as a selectivity descriptor, we screen three SACs with excellent activity and selectivity toward NRR, i.e., Re@WS2, Os@WS2 and Ir@WS2 with favorable limiting potentials of –0.44 V, –0.38 V and –0.69 V. By using the explicit H9O4+ model, the kinetic barriers of the rate-determining steps (0.47 eV–1.15 eV) of the solvated proton transfer on the screened SACs are found to be moderate, indicative of a kinetically feasible process. Microkinetic modeling shows that the turnover frequencies of N2 reduction to NH3 on Re@WS2, Os@WS2 and Ir@WS2 are 1.52 × 105, 8.21 × 102 and 4.17 × 10−4 per s per site at 400 K, achieving fast reaction rates. The coexistence of empty and occupied 5d orbitals of candidate SACs is beneficial for σ donation and π* backdonation, endowing them with extraordinary N2 adsorption and activation. Moreover, the screened SACs possess good dispersity and thermodynamic stability. Our work provides a promising solution for the efficient screening and rational design of high-performance electrocatalysts toward the NRR.