2,2,3,3,3-Pentafluoro-1-propanol and its dimer: structural diversity, conformational conversion, and tunnelling motion†
Abstract
Rotational spectra of 2,2,3,3,3-pentafluoro-1-propanol (PFP) were measured using cavity and chirped pulse Fourier transform microwave spectrometers. Of the nine possible PFP configurations which include four mirror-imaged pairs and an achiral conformer, the two most stable monomeric PFP imaged pairs, i.e., PFPG+g+/G−g− and PFPTg+/Tg− were observed and assigned, along with the 13C, 18O and deuterated isotopologues of PFPG+g+/G−g−. The rotational transitions of PFPTg+/Tg− exhibit large tunnelling splittings and were analyzed in detail. CREST, a recently developed conformational search tool that was used for systematic conformational searches of possible binary PFP conformers and the subsequent DFT calculations at the B3LYP-D3(BJ)/def2-QZVP level produced nearly 80 stable, binary PFP geometries, where ten of them are within a narrow energy window of ∼1 kJ mol−1, highlighting the structural diversity of the system. Rotational spectra of five (PFP)2 conformers were assigned and were identified as the five most stable binary conformers predicted. A closer examination reveals that the assigned binary conformers are made exclusively of the two most stable PFP monomeric subunits observed experimentally. A combined kinetic and thermodynamic model was proposed to explain the observation or non-observation of low energy conformers, and the analysis was further verified by the ‘argon test’. The non-covalent intermolecular interactions of PFP and its binary conformers are also discussed with the aid of quantum theory of atoms in molecules (QTAIM) and non-covalent interaction (NCI) analyses, as well as the effects of fluorination by comparing with 1-propanol and its dimers.