Issue 26, 2022

Clarifying notes on the bonding analysis adopted by the energy decomposition analysis

Abstract

We discuss the fundamental aspects of the EDA-NOCV method and address some critical comments that have been made recently. The EDA-NOCV method unlike most other methods focuses on the process of bond formation between the interacting species and not just only on the analysis of the finally formed bond. This is demonstrated using LiF as an example. There is a difference between the interactions between the initial species which form the bond and are also the final product of bond cleavage, and the interactions between the fragments in the eventually formed molecule. The flexibility of the method allows the choice of the interacting fragments which helps to identify the charge and electron configuration of the fragments which describe the bond. This is very helpful in cases where the bond may be described with several Lewis structures. We reject the idea that it would be a disadvantage to have “bond path functions” as the energy components in the EDA, which actually indicate the variability of the method. The bonding analysis in a different sequence of the bond formation gives important results for the various questions that can be asked. This is demonstrated by using CH2, CO2 and the formation of a guanine quartet as examples. The fact that a bond is always defined by the bound molecule, the fragments, and their states is universal and deeply physical, as we show here again for various examples. The results of the EDA-NOCV method are in full accordance with the physical mechanism of the chemical bond as revealed by Ruedenberg.

Graphical abstract: Clarifying notes on the bonding analysis adopted by the energy decomposition analysis

Article information

Article type
Paper
Submitted
11 May 2022
Accepted
01 Jun 2022
First published
02 Jun 2022

Phys. Chem. Chem. Phys., 2022,24, 15726-15735

Clarifying notes on the bonding analysis adopted by the energy decomposition analysis

F. M. Bickelhaupt, C. Fonseca Guerra, M. Mitoraj, F. Sagan, A. Michalak, S. Pan and G. Frenking, Phys. Chem. Chem. Phys., 2022, 24, 15726 DOI: 10.1039/D2CP02153F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements