Influence of ionic liquids on the chain dynamics and enthalpy relaxation of poly(methyl methacrylate)†
Abstract
Imidazolium ionic liquids (ILs) with various alkyl chain lengths on the cations ([Cnmim]+, n = 2, 4 and 8) and different combined anions ([TFSI]− and [PF6]−) were blended with poly(methyl methacrylate) (PMMA), and the effects of the IL structure on the chain dynamics of PMMA were experimentally investigated by rheology and DSC measurements combined with a simulation method. The results indicate that the interaction between PMMA and ILs becomes stronger as the alkyl chain length on the imidazolium ring increases or the anion changes from [PF6]− to [TFSI]−. As a result, a higher critical entanglement concentration and a larger entanglement molecular weight of PMMA were found in [C8mim][TFSI] due to the stiffer conformation. Molecular dynamics (MD) simulations further demonstrated stronger interactions between PMMA and ILs with longer cationic alkyl chain lengths or [TFSI]− anions, which showed smaller Flory–Huggins interaction parameters and larger radii of gyration, Rg. However, the larger size of alkyl chains or [TFSI]− anions produced a larger free volume in the system as evidenced by positron annihilation lifetime spectroscopy (PALS), which competed with the molecular interaction and dominated the segmental motion. Therefore, a lower Tg and accelerated segmental relaxation were observed. Compared to alkyl chain length, the effect of anions on the interactions between ILs and PMMA is more prominent.