Issue 35, 2022

Modulating the Schottky barrier of MXenes/2D SiC contacts via functional groups and biaxial strain: a first-principles study

Abstract

Two-dimensional (2D) graphene-like SiC has attracted intense interest recently due to its unique electrical and physical properties. In implementing 2D semiconductors in device applications, one of the main challenges so far has been the formation of a high-quality Schottky barrier owing to the strong Fermi level pinning (FLP) at the interface of traditional metal–2D semiconductor contacts. In this paper, the 2D MXenes Ti3C2T2 (T = F, O, OH) are proposed to serve as electrodes for 2D SiC. The structural and barrier properties of the Ti3C2T2/SiC contacts were systematically investigated based on first-principles calculations combined with the GGA-PBE and HSE06 functionals. It is found that Ti3C2T2 can be bonded with 2D SiC by van der Waals (vdW) interactions. Weak FLP is exhibited at Ti3C2T2/SiC vdW contacts. The type of contact can be tuned by changing the functional T group of Ti3C2T2. Ti3C2F2/SiC and Ti3C2O2/SiC contacts exhibit a p-type Schottky contact and p-type Ohmic contact, respectively, whereas an n-type Ohmic contact occurs in the Ti3C2(OH)2/SiC contact. In addition, the calculated tunneling possibility (TB) is ∼20% between Ti3C2T2 and SiC, indicating weak bonding at the Ti3C2T2/SiC vdW junctions. Furthermore, the Schottky barrier height and TB of the Ti3C2(OH)2/SiC contacts can be modulated via the biaxial strain. The controllable contact type and barrier in Ti3C2T2/SiC contacts provide guidelines for developing high-performance 2D SiC optoelectronic and electronic devices.

Graphical abstract: Modulating the Schottky barrier of MXenes/2D SiC contacts via functional groups and biaxial strain: a first-principles study

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2022
Accepted
01 Aug 2022
First published
30 Aug 2022

Phys. Chem. Chem. Phys., 2022,24, 20837-20847

Modulating the Schottky barrier of MXenes/2D SiC contacts via functional groups and biaxial strain: a first-principles study

L. Huang, X. Deng, S. Pan and W. Cui, Phys. Chem. Chem. Phys., 2022, 24, 20837 DOI: 10.1039/D2CP02351B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements