Issue 35, 2022

Kinetic model for moisture-controlled CO2 sorption

Abstract

The understanding of the sorption/desorption kinetics is essential for practical applications of moisture-controlled CO2 sorption. We introduce an analytic model of the kinetics of moisture-controlled CO2 sorption and its interpretation in two limiting cases. In one case, chemical reaction kinetics on pore surfaces dominates, in the other case, diffusive transport through the sorbent defines the kinetics. We show that reaction kinetics, which is dominant in the first case, can be expressed as a linear combination of 1st and 2nd order kinetics in agreement with the static isotherm equation derived and validated in a previous paper. The interior transport kinetics can be described by non-linear diffusion equations. By combining all carbon species into a single equation, we can eliminate – in certain limits – the source terms associated with chemical reactions. In this case, the governing equation is Image ID:d2cp02440c-t1.gif. For a sorbent in a form of a flat sheet or a membrane, one can maintain the same functional form of a diffusion equation by introducing a generalized effective diffusivity DM that combines contributions from both surface chemical reaction kinetics and interior diffusive transport kinetics. Experimental data of transient CO2 flux in a preconditioned commercial anion exchange membrane fit well to the 1st order model as long as very dry states are avoided, validating the theory. The observed DM for a preconditioned commercial anion exchange membrane ranges from 6.6 × 10−14 to 7.1 × 10−14 m2 s−1 at 35 °C. These small values compared to typical ionic diffusivities imply a very slow kinetics, which will be the largest issue that needs to be addressed for practical application. The collected transient CO2 flux data are used to predict the magnitude of a continuous CO2 pumping flux in an active membrane that transports CO2 against a CO2 concentration gradient. The pumped CO2 flux is supported by water flux due to a water concentration gradient.

Graphical abstract: Kinetic model for moisture-controlled CO2 sorption

Supplementary files

Article information

Article type
Paper
Submitted
30 May 2022
Accepted
12 Aug 2022
First published
15 Aug 2022

Phys. Chem. Chem. Phys., 2022,24, 21061-21077

Author version available

Kinetic model for moisture-controlled CO2 sorption

Y. Kaneko and K. S. Lackner, Phys. Chem. Chem. Phys., 2022, 24, 21061 DOI: 10.1039/D2CP02440C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements