Issue 34, 2022

Benchmark ab initio potential energy surface mapping of the F + CH3NH2 reaction

Abstract

This electronic structure study reveals four exothermic and two endothermic reaction pathways of the F + CH3NH2 system: the barrierless hydrogen abstraction from the methyl/amino group (HF + CH2NH2/CH3NH), amino/methyl substitution (NH2 + CH3F and CH3 + NH2F) and hydrogen substitution from the two functional groups (H + CH2FNH2/CH3NHF). The benchmark classical and adiabatic energies are obtained using a high-accuracy composite ab initio approach, where the gold-standard explicitly-correlated coupled cluster method (CCSD(T)-F12b) is applied with the correlation-consistent polarized valence quintuple-zeta F12 basis set (cc-pV5Z-F12) and further additive energy contributions. Considering indispensable post-(T) correlation, core correlation, scalar relativistic, spin–orbit and harmonic zero-point energy corrections, the obtained global minimum of the potential energy surface is the post-reaction CH2NH2⋯HF complex in the product channel. Although each substitution pathway has a high barrier, the energies of amino-substitution and methyl-hydrogen-substitution products are below the energy of the reactants, as well as the submerged-barrier hydrogen-abstraction pathways.

Graphical abstract: Benchmark ab initio potential energy surface mapping of the F + CH3NH2 reaction

Article information

Article type
Paper
Submitted
01 Jul 2022
Accepted
02 Aug 2022
First published
03 Aug 2022
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2022,24, 20249-20257

Benchmark ab initio potential energy surface mapping of the F + CH3NH2 reaction

T. Szűcs and G. Czakó, Phys. Chem. Chem. Phys., 2022, 24, 20249 DOI: 10.1039/D2CP03006C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements