Issue 38, 2022

Exploiting the “Lego brick” approach to predict accurate molecular structures of PAHs and PANHs

Abstract

Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles (PANHs) are important and ubiquitous species in space. However, their accurate structural and spectroscopic characterization is often missing. To fill this gap, we exploit the so-called “Lego brick” approach [Melli et al., J. Phys. Chem. A, 2021, 125, 9904] to evaluate accurate rotational constants of some astrochemically relevant PAHs and PANHs. This model is based on the assumption that a molecular system can be seen as formed by smaller fragments for which a very accurate equilibrium structure is available. Within this model, the “template molecule” (TM) approach is employed to account for the modifications occurring when going from the isolated fragment to the molecular system under investigation, with the “linear regression” model being exploited to correct the linkage between different fragments. In the present work, semi-experimental equilibrium structures are used within the TM model. The performance of the “Lego brick” approach has been first tested for a set of small PA(N)Hs for which experimental data are available, thus leading to the conclusion that it is able to provide rotational constants with a relative accuracy well within 0.1%. Subsequently, it has been extended to the accurate prediction of the rotational constants for systems lacking any spectroscopic characterization.

Graphical abstract: Exploiting the “Lego brick” approach to predict accurate molecular structures of PAHs and PANHs

Supplementary files

Article information

Article type
Paper
Submitted
18 Jul 2022
Accepted
31 Aug 2022
First published
31 Aug 2022
This article is Open Access
Creative Commons BY-NC license

Phys. Chem. Chem. Phys., 2022,24, 23254-23264

Exploiting the “Lego brick” approach to predict accurate molecular structures of PAHs and PANHs

H. Ye, S. Alessandrini, M. Melosso and C. Puzzarini, Phys. Chem. Chem. Phys., 2022, 24, 23254 DOI: 10.1039/D2CP03294E

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements