Issue 47, 2022

Environmental gas sensors based on electroactive hybrid organic–inorganic nanocomposites using nanostructured materials

Abstract

Advanced gas sensing devices are urgently demanded in the modern scientific world to control air pollution and protect human life. For this purpose, semiconducting electroactive materials can revolutionize the idea of conventional gas sensors. Chemi-resistive gas sensors based on electroactive hybrid organic–inorganic nanocomposites are incredibly promising gas sensing materials because they possess the advantages of excellent selectivity, high sensitivity, low response time, repeatability, high stability, cost-effectiveness, and simple fabrication techniques, and they can be operated at room temperature. This review emphasizes the recent developments of organic–inorganic hybrid nanocomposite-based electroactive gas sensors, including metal oxide nanocomposites, which are potential gas sensing materials due to the presence of numerous charge carriers. The review also focuses on nanostructured materials of different dimensions, such as semiconducting quantum dots, carbon dots, nanotubes, nanowires, and nanosheets, used for developing these gas sensing compounds and their significance and challenges. Some possible fabrication techniques for developing efficient gas sensors with different morphologies are discussed, with their probable sensing mechanism behind the detection of toxic vapours. Subsequently, a summary and possible outcome of this study, along with the various achievements and prospects in this field, are also discussed.

Graphical abstract: Environmental gas sensors based on electroactive hybrid organic–inorganic nanocomposites using nanostructured materials

  • This article is part of the themed collection: PCCP Reviews

Article information

Article type
Review Article
Submitted
12 Sep 2022
Accepted
28 Oct 2022
First published
31 Oct 2022

Phys. Chem. Chem. Phys., 2022,24, 28680-28699

Environmental gas sensors based on electroactive hybrid organic–inorganic nanocomposites using nanostructured materials

P. Dutta and G. Gupta, Phys. Chem. Chem. Phys., 2022, 24, 28680 DOI: 10.1039/D2CP04247A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements