Wavelength dependence of the multiphoton ionization of CH3I by intense femtosecond laser pulses through Freeman resonances†
Abstract
Multiphoton ionization (MPI) of methyl iodide, CH3I, has been investigated with the photoelectron imaging (PEI) technique, using high intensity femtosecond laser pulses at different central wavelengths. The use of high laser field strengths alters the way in which matter–radiation interaction takes place. This generates highly nonlinear phenomena, among which we can highlight the Stark shift effect. It can distort the potential energy surfaces of atoms and molecules, varying both the energy of electronic and rovibrational states of these systems and their ionization potentials. In this way, the Stark shift can generate resonances between intermediate states and an integer number of laser photons of a given wavelength, which would be absent in the low intensity regime. The main purpose of this work is the generation, detection and characterization of resonances produced by the Stark shift, commonly known as Freeman resonances, induced by multiphoton ionization of gas-phase CH3I at different laser wavelengths. The results obtained reveal that a multitude of resonances are induced in the ionization of CH3I in the range of intensities employed, involving several Rydberg states. Ionization pathways associated with different degrees of vibrational excitation in both the intermediate states and the molecular cation generated in each of the experiments are proposed.