C–H deuteration of organic compounds and potential drug candidates
Abstract
C–H deuteration has been intricately developed to satisfy the urgent need for site-selectively deuterated organic frameworks. Deuteration has been primarily used to study kinetic isotope effects of reactions but recently its significance in pharmaceutical chemistry has been discovered. Deuterium labelled compounds have stolen the limelight since the inception of the first FDA-approved deuterated drug, for the treatment of chorea-associated Huntington's disease, and their pharmacological importance was realised by chemists, although surprisingly very late. Various approaches were developed to carry out site-selective deuteration. However, the most common and efficient method is hydrogen isotope exchange (HIE). This review summarises deuteration methods of various organic motifs containing C(sp2)–H and C(sp3)–H bonds utilizing C–H bond functionalisation as a key step along with a variety of catalysts, and exemplifies their biological relevance.