Zeolite nanosheets for catalysis
Abstract
Zeolites with well-defined micropores have been widely used as heterogeneous catalysts in the fields of petroleum refining, fine chemicals, and environment protection. However, the sole micropores in the zeolite structures usually impose diffusion constraints, which would greatly influence their catalytic performances. Therefore, it is highly desirable to shorten the diffusion pathway of zeolites and thus eliminate the diffusion constraints. One of the efficient methods is to synthesize zeolite nanosheets, which has become a hot topic in the past decades. In this tutorial review, the recent progresses in the synthesis of zeolite nanosheets and their relevant catalysis are briefly discussed. Various strategies for the synthesis of zeolite nanosheets are summarized including delamination, templated crystallization, additive-assisted synthesis, seed-directed synthesis, and gaseous expansion synthesis. In addition, the catalytic reactions of zeolite nanosheets with acidic and metal sites are also outlined. This tutorial review should be significant for the design and preparation of highly efficient zeolite catalysts.