Issue 10, 2022

Lateral layered semiconductor multijunctions for novel electronic devices

Abstract

Layered semiconductors, represented by transition metal dichalcogenides, have attached extensive attention due to their unique and tunable electrical and optical properties. In particular, lateral layered semiconductor multijunctions, including homojunctions, heterojunctions, hybrid junctions and superlattices, present a totally new degree of freedom in research on electronic devices beyond traditional materials and their structures, providing unique opportunities for the development of new structures and operation principle-based high performance devices. However, the advances in this field are limited by the precise synthesis of high-quality junctions and greatly hampered by ambiguous device performance limits. Herein, we review the recent key breakthroughs in the design, synthesis, electronic structure and property modulation of lateral semiconductor multijunctions and focus on their application-specific devices. Specifically, the synthesis methods based on different principles, such as chemical and external source-induced methods, are introduced stepwise for the controllable fabrication of semiconductor multijunctions as the basics of device application. Subsequently, their structure and property modulation are discussed, including control of their electronic structure, exciton dynamics and optical properties before the fabrication of lateral layered semiconductor multijunction devices. Precise property control will potentially result in outstanding device performances, including high-quality diodes and FETs, scalable logic and analog circuits, highly efficient optoelectronic devices, and unique electrochemical devices. Lastly, we focus on several of the most essential but unresolved debates in this field, such as the true advantages of few-layer vs. monolayer multijunctions, how sharp the interface should be for specific functional devices, and the superiority of lateral multijunctions over vertical multijunctions, highlighting the next-phase strategy to enhance the performance potential of lateral multijunction devices.

Graphical abstract: Lateral layered semiconductor multijunctions for novel electronic devices

Article information

Article type
Review Article
Submitted
10 Jan 2022
First published
28 Apr 2022

Chem. Soc. Rev., 2022,51, 4000-4022

Lateral layered semiconductor multijunctions for novel electronic devices

S. Zhang, X. Deng, Y. Wu, Y. Wang, S. Ke, S. Zhang, K. Liu, R. Lv, Z. Li, Q. Xiong and C. Wang, Chem. Soc. Rev., 2022, 51, 4000 DOI: 10.1039/D1CS01092A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements