Issue 4, 2022

Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design

Abstract

Inverse molecular design involves algorithms that sample molecules with specific target properties from a multitude of candidates and can be posed as an optimization problem. High-dimensional optimization tasks in the natural sciences are commonly tackled via population-based metaheuristic optimization algorithms such as evolutionary algorithms. However, often unavoidable expensive property evaluation can limit the widespread use of such approaches as the associated cost can become prohibitive. Herein, we present JANUS, a genetic algorithm inspired by parallel tempering. It propagates two populations, one for exploration and another for exploitation, improving optimization by reducing property evaluations. JANUS is augmented by a deep neural network that approximates molecular properties and relies on active learning for enhanced molecular sampling. It uses the SELFIES representation and the STONED algorithm for the efficient generation of structures, and outperforms other generative models in common inverse molecular design tasks achieving state-of-the-art target metrics across multiple benchmarks. As neither most of the benchmarks nor the structure generator in JANUS account for synthesizability, a significant fraction of the proposed molecules is synthetically infeasible demonstrating that this aspect needs to be considered when evaluating the performance of molecular generative models.

Graphical abstract: Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
19 Jan 2022
Accepted
03 May 2022
First published
03 May 2022
This article is Open Access
Creative Commons BY-NC license

Digital Discovery, 2022,1, 390-404

Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design

A. Nigam, R. Pollice and A. Aspuru-Guzik, Digital Discovery, 2022, 1, 390 DOI: 10.1039/D2DD00003B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements