Symmetry breaking of A3M2X9-type perovskite derivatives induced by polar quaternary ammonium cations: achieving efficient nonlinear optical properties†
Abstract
Low-dimensional organic–inorganic metal halides, especially lead-free perovskites, are attracting increasing attention because of their environmentally friendly processing, flexible structures, chemical stability, and promising nonlinear optical properties. Herein, we report a new stable polar 0D lead-free hybrid bismuth chloride to enable the second-harmonic generation (SHG) active material (BTA)3Bi2Cl9 (BTA = benzyltriethylammonium, C6H5CH2N(C2H5)3+) that was obtained by the antisolvent vapor diffusion method and crystallized in the polar Cc space group. Its structure features organic cations surrounded by face-sharing [Bi2Cl9]3− dimers. (BTA)3Bi2Cl9 exhibits a wide direct bandgap (3.21 eV) and a strong phase-matchable SHG conversion efficiency (1.39 × KDP). Theoretical calculation reveals that the SHG response is owing to the synergistic effect of distorted inorganic [Bi2Cl9]3− anions and polar organic BTA+ cations. This work not only enriches the family of organic–inorganic A3M2X9 (A = monovalent cations; M = trivalent metal ions; and X = halide ions) NLO crystals but also provides the possibilities for further designing novel lead-free semiconducting piezoelectric, pyroelectric and ferroelectric materials.