Issue 13, 2022

Rare-earth metal complexes with redox-active formazanate ligands

Abstract

The synthesis and characterisation of rare-earth metal complexes with redox-active formazanate ligands are described. Deprotonation of the neutral formazan ligand L1H (L1 = PhNNC(Ph)NNPh) with [Ln{N(SiMe3)2}3] (Ln = Y, Sm, Dy) resulted in homoleptic tris(formazanate) complexes with the general formula [(L1)3Ln] (Ln = Y (1), Sm (2), Dy (3)), in which the central metal atom is coordinated by six N atoms, revealing a propeller-type structure. To generate heteroleptic complexes, a novel formazan ligand L2H (L2 = {PhNNC(4-tBuPh)NNPh}) was employed. Salt metathesis by using the trivalent precursors [SmCp*2(μ-Cl)2K(thf)] (Cp* = η5-C5Me5) or [LnCp2Cl]2 (Cp = η5-C5H5, Ln = Dy, Yb) and [L2K(thf)] formed mono(formazanate) complexes, [L2SmCp*2] (4) and [L2LnCp2] (Ln = Dy (5), Yb (6)), respectively. Unexpectedly, a redox reaction occurred between [L2K(thf)] and the divalent ytterbium precursor, [YbI2(thf)2], generating the trivalent ytterbium complex [(L2)3Yb] (7). When the neutral formazan ligand (L2H) reacted with [SmCp*2(thf)2], the oxidised samarium complex 4 was formed. These novel compounds were fully characterised and their electrochemical properties were explored by cyclic voltammetry.

Graphical abstract: Rare-earth metal complexes with redox-active formazanate ligands

Supplementary files

Article information

Article type
Paper
Submitted
14 Feb 2022
Accepted
07 Mar 2022
First published
11 Mar 2022
This article is Open Access
Creative Commons BY license

Dalton Trans., 2022,51, 5218-5226

Rare-earth metal complexes with redox-active formazanate ligands

D. Jin, X. Sun, A. Hinz and P. W. Roesky, Dalton Trans., 2022, 51, 5218 DOI: 10.1039/D2DT00456A

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements