Facile activation of inert small molecules using a 1,2-disilylene†
Abstract
Reactions of the known amidinate stabilised 1,2-disilylene, [{ArC(NDip)2}Si]21 (Dip = 2,6-diisopropylphenyl, Ar = 4-C6H4But) with a series of inert, unsaturated small molecule substrates have been carried out. Compound 1 reduces ButNC: to give the singlet biradicaloid 1,3-disilacyclobutanediyl [{ArC(NDip)2}Si(μ-CNBut)]23, which can be oxidised by 1,2-dibromoethane to give [{ArC(NDip)2}(Br)Si(μ-CNBut)]24. Disilylene 1 reduces two molecules of ethylene to give an unprecedented disilabicyclo[2.2.0]hexane, [{ArC(NDip)2}Si(μ-C2H4)]25. In contrast, only one molecule of ethylene inserts in the Ge–Ge bond of the digermylene analogue of 1, viz. [{ArC(NDip)2}Ge]26, leading to the formation of the bis(germylene), [{ArC(NDip)2}Ge]2(μ-C2H4) 7. Compound 1 reduces CO2, generating CO, and the oxo/carbonate-bridged disilicon(IV) system, {ArC(NDip)2}Si(μ-CO3)2(μ-O)Si{(NDip)2CAr} 10, while its reaction with N2O proceeds via generation of N2, and a hydrogen abstraction process, to give the oxo/hydroxy disilicon(IV) species, [{ArC(NDip)2}(HO)Si(μ-O)]211. This study highlights new small molecule activation chemistry for 1,2-disilylenes, which could lead to further adoption of compound 1 as a potent reducing reagent for the transformation of inert unsaturated molecules into value added products.