Issue 29, 2022

Ni2P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H2 evolution

Abstract

Nanostructured H2 evolution cocatalysts are able to promote charge separation and thus enhance the efficiency of the photocatalytic H2 evolution reaction (HER). However, the nanosized cocatalyst particles are easily detached from the surfaces of semiconductors or severely aggregated in reaction systems, which not only greatly reduces the photocatalytic HER efficiency during long-term use but also greatly increases the difficulty of recovery. Moreover, powdery cocatalysts have poor compatibility with the scale-up photoelectrochemical devices. In this paper, a monolithic cocatalyst is developed by controllably growing Ni2P nanowire arrays on Ni foam substrate (Ni2P NWAs/NF) via a direct vapor-phase phosphorization method. The grown Ni2P NWAs with high specific surface areas can not only offer ample active sites for the HER, but also serve as scaffolds for anchoring dye molecules to maximize the light utilization efficiency, which endows the Ni2P NWAs/NF monolithic cocatalyst with excellent HER activity. When sensitized with Erythrosin B (ErB) in triethanolamine (TEOA) solution, the turnover number (TON) of H2 evolution based on ErB reaches 9.7 in 5 h under visible light. Notably, the good structural integrity and inherent magnetism enable the Ni2P NWAs/NF to be easily separated from the reaction solution and excellent catalytic H2 evolution stability over a 45 h cycling reaction. This work presents a new strategy of fabricating monolithic cocatalysts with controllable microstructure and functionalities as well as high activity, durability, and device-compatibility for large-scale solar energy conversion applications.

Graphical abstract: Ni2P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H2 evolution

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2022
Accepted
01 Jun 2022
First published
22 Jun 2022

Dalton Trans., 2022,51, 11029-11039

Ni2P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H2 evolution

F. Wang, T. Liu, Z. Liu, Z. Zhang and S. Min, Dalton Trans., 2022, 51, 11029 DOI: 10.1039/D2DT01402E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements