Issue 40, 2022

Constructing a multidimensional porous structure of K/Co co-substituted Na3V2(PO4)3/C attached on the lamellar Ti3C2Tx MXene substrate for superior sodium storage property

Abstract

Na3V2(PO4)3 (NVP) materials have emerged as prospective cathodes for sodium-ion batteries (SIBs). However, its weak intrinsic conductivity has limited deeper research. Herein, we adopt the strategy of simultaneous K/Co co-substitution and Ti3C2Tx MXene (MX) introduction to optimize NVP. The K/Co co-substitution brings about the synergetic effect of NVP framework stabilization. Doping Co2+ generates beneficial holes and accelerating electronic conductivity. The MX plates are stacked at random to form a porous construction, increasing the contact areas to provide more active sites for Na+ shuttling and buffering the volume change. Furthermore, the lamellar MX and the carbon layers form efficient conductive networks that increase electron migration. Notably, K0.1Na2.95V1.95Co0.05(PO4)3@MX (KC05@MX) exhibited an initial capacity of 116 mA h g−1 under 1 C with an extraordinary retention of 86.8% at the 400th cycle. It realized high performance under 20 C and 50 C, and the outputs were 93.5 and 82.4 mA h g−1 at the 1st cycle and 66.6 and 53.4 mA h g−1 at the 1000th cycle, respectively, with slight capacity loss at 0.028% and 0.035%. Furthermore, the Bi2Se3//KC05@MX asymmetric full cell expressed great electrochemical properties, indicating the superior practical application prospect of KC05@MX.

Graphical abstract: Constructing a multidimensional porous structure of K/Co co-substituted Na3V2(PO4)3/C attached on the lamellar Ti3C2Tx MXene substrate for superior sodium storage property

Supplementary files

Article information

Article type
Paper
Submitted
30 Jun 2022
Accepted
14 Sep 2022
First published
14 Sep 2022

Dalton Trans., 2022,51, 15425-15435

Constructing a multidimensional porous structure of K/Co co-substituted Na3V2(PO4)3/C attached on the lamellar Ti3C2Tx MXene substrate for superior sodium storage property

Y. Chen, T. Zhou, Z. Tian, Y. Wang and L. Guo, Dalton Trans., 2022, 51, 15425 DOI: 10.1039/D2DT02087D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements