Issue 42, 2022

MOF-coated upconversion nanoconstructs for synergetic photo-chemodynamic/oxygen-elevated photodynamic therapy

Abstract

Excessive production of intracellular reactive oxygen species (ROS) can induce apoptosis of cancer cells; however, it is often limited by severe triggering conditions and hypoxic microenvironments of solid tumors. To address these issues, herein, we have designed a MOF-coated upconversion nanoconstruct (UCTSCF, referring to UC@Ce6/TFS@mSiO2@MIL-100(Cu/Fe)) for synergetic photochemodynamic therapy (PCT)/oxygen-elevated photodynamic therapy (PDT). The MOF (MIL-100(Fe)) coating with Cu-doping was designed to catalyze H2O2 overexpression in cancer cells to generate the most cytotoxic ˙OH via chemodynamic therapy (CDT). It is noted that UC, representing 808 nm driven upconversion nanoparticles with high tissue penetration depth/low over-heating effects, was designed to provide intense blue light which can relieve the severe triggering conditions of CDT via PCT. Furthermore, the functional layer of the photosensitizer chlorin e6 (Ce6) and O2-carrying triethoxy(1H,1H,2H,2H-nonafluorohexyl)silane (TFS) co-doped mesoporous silicon (Ce6/TFS@mSiO2) can cause oxygen-elevated 1O2 production upon 671 nm light irradiation. In such a simple ROS generation nanoplatform, we heighten the antitumor effect via oxygen-elevated synergetic tumor PCT/PDT.

Graphical abstract: MOF-coated upconversion nanoconstructs for synergetic photo-chemodynamic/oxygen-elevated photodynamic therapy

Supplementary files

Article information

Article type
Paper
Submitted
27 Jul 2022
Accepted
05 Oct 2022
First published
05 Oct 2022

Dalton Trans., 2022,51, 16336-16343

MOF-coated upconversion nanoconstructs for synergetic photo-chemodynamic/oxygen-elevated photodynamic therapy

H. Chu, Y. Li, C. Wang, J. Shen and Y. Wei, Dalton Trans., 2022, 51, 16336 DOI: 10.1039/D2DT02441A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements