Deoxygenation of chalcogen oxides EO2 (E = S, Se) with phospha-Wittig reagents†
Abstract
In here we present the deoxygenation of the chalcogen oxides EO2 (E = S, Se) with R-P(PMe3), so-called phospha-Wittig reagents. The reaction of DABSO (DABCO·2SO2) with R-P(PMe3) (R = Mes*, 2,4,6-tBu3-C6H2; MesTer, 2,6-(2,4,6-Me3-C6H2)2-C6H3) resulted in the formation of thiadiphosphiranes (RP)2S (1:R), while selenadiphosphiranes (RP)2Se (2:R) were afforded with SeO2, both accompanied by the formation of OPMe3. Utilizing the sterically more encumbered DipTer-P(PMe3) (DipTer = 2,6-(2,6-iPr2-C6H3)2-C6H3) a different selectivity was observed and (DipTerP)2Se (2:DipTer) along with [Se(μ-PDipTer)]2 (3:DipTer) were isolated as the Se-containing species in the reaction with SeO2. Interestingly, the reaction with DABSO (or with equimolar ratios of SeO2 at elevated temperatures) gave rise to the formation of the OPMe3-stabilized dioxophosphorane (phosphinidene dioxide) DipTerP(O)2-OPMe3 (4:DipTer) as the main product. This contrasting reactivity can be rationalized by two potential pathways in the reaction with EO2: (i) a Wittig-type pathway and (ii) a pathway involving oxygenation of the phospha-Wittig reagents and release of SO. Thus, phospha-Wittig reagents are shown to be useful synthetic tools for the metal-free deoxygenation of EO2 (E = S, Se).
- This article is part of the themed collection: #RSCPoster Conference