Predicting glass transition temperature and melting point of organic compounds via machine learning and molecular embeddings†
Abstract
Gas-particle partitioning of secondary organic aerosols is impacted by particle phase state and viscosity, which can be inferred from the glass transition temperature (Tg) of the constituting organic compounds. Several parametrizations were developed to predict Tg of organic compounds based on molecular properties and elemental composition, but they are subject to relatively large uncertainties as they do not account for molecular structure and functionality. Here we develop a new Tg prediction method powered by machine learning and “molecular embeddings”, which are unique numerical representations of chemical compounds that retain information on their structure, inter atomic connectivity and functionality. We have trained multiple state-of-the-art machine learning models on databases of experimental Tg of organic compounds and their corresponding molecular embeddings. The best prediction model is the tgBoost model built with an Extreme Gradient Boosting (XGBoost) regressor trained via a nested cross-validation method, reproducing experimental data very well with a mean absolute error of 18.3 K. It can also quantify the influence of number and location of functional groups on the Tg of organic molecules, while accounting for atom connectivity and predicting different Tg for compositional isomers. The tgBoost model suggests the following trend for sensitivity of Tg to functional group addition: –COOH (carboxylic acid) > –C(O)OR (ester) ≈ –OH (alcohol) > –C(O)R (ketone) ≈ –COR (ether) ≈ –C(O)H (aldehyde). We also developed a model to predict the melting point (Tm) of organic compounds by training a deep neural network on a large dataset of experimental Tm. The model performs reasonably well against the available dataset with a mean absolute error of 31.0 K. These new machine learning powered models can be applied to field and laboratory measurements as well as atmospheric aerosol models to predict the Tg and Tm of SOA compounds for evaluation of the phase state and viscosity of SOA.
- This article is part of the themed collections: The Use of Machine Learning in Atmospheric Science Research - Topic Highlight and Aerosol formation in the urban environment