Laser-assisted high-performance PtRu alloy for pH-universal hydrogen evolution†
Abstract
Elucidating the interaction between different atomic species of bimetallic nanoparticles under reaction conditions is the key to the design of efficient catalysts. Here, we report a laser-assisted strategy towards PtRu alloys, where isolated Pt sites are anchored on the Ru host, and track the variation of the active site under electrocatalytic conditions. Operando X-ray absorption spectroscopy identified the local environment variations around Pt single atoms and revealed the increased PtRu alloying degree during the hydrogen evolution reaction (HER). Theoretical simulations confirmed that the increase of alloying extent modulates the d-band center of Ru for enhancing the activity. Surface-restructured PtRu alloy exhibited outstanding HER activity and stability under all pH values, achieving an unexpected low overpotential of only 15, 17, and 28 mV at 10 mA cm−2 in 1 M KOH, 1 M PBS, and 0.5 M H2SO4, respectively. This demonstrates the feasibility of surface engineering for designing advanced bimetallic catalysts with atomic-scale platinum decoration.