Electrolyte design implications of ion-pairing in low-temperature Li metal batteries†
Abstract
Lithium metal batteries are capable of pushing cell energy densities beyond what is currently achievable with commercial Li-ion cells and are the ideal technology for supplying power to electronic devices at low temperatures (≤−20 °C). To minimize the thermal management requirements of these devices, batteries capable of both charging and discharging at these temperatures are highly desirable. Here, we report >4 V Li metal full cell batteries (N/P = 2) capable of hundreds of stable cycles down to −40 °C, unambiguously enabled by the introduction of cation/anion pairs in the electrolyte. Via controlled experimental and computational investigations in electrolytes employing 1,2-dimethoxyethane as the solvating solvent, we observed distinct performance transitions in low temperature electrochemical performance, coincident with a shift in the Li+ binding environment. The performance advantages of heavily ion-paired electrolytes were found to apply to both the cathode and anode, providing Li metal Coulombic efficiencies of 98.9, 98.5, and 96.9% at −20, −40, and −60 °C, respectively, while improving the oxidative stability in support of >4 V cathodes. This work reveals a strong correlation between ion-pairing and low-temperature performance while providing a viable route to Li metal full batteries cycling under extreme conditions.