Issue 8, 2022

A self-purifying electrolyte enables high energy Li ion batteries

Abstract

Conventional LiPF6/carbonate electrolytes with poor oxidative stability and reactive decomposition products (HF, PF5, POF3, etc.) dictate less-stable electrode/electrolyte interphases, which thereby promote the dissolution of transition metal ions, accelerate the constant decomposition of electrolyte solvent, and result in the degradation of LIBs. Herein, we demonstrate a new type of electrolyte, id est, 1.6 M lithium bis(fluorosulfonyl)imide (LiFSI) in (2-cyanoethyl)triethoxysilane (TEOSCN) with a self-purifying feature. TEOSCN molecules in the electrolyte can effectively eliminate the reactive pernicious species, while the anions of FSI dominate the interphase components with low-resistance on both graphite and Ni-rich NMC cathode although at an essentially low concentration. This self-purifying electrolyte system enables long-term cycling of MCMB‖NMC811 full-cells for 1000 cycles with an ultra-high capacity retention of 91% at 25 °C and for 500 cycles with a retention of 81% at 60 °C. Even in extreme cases, i.e., exposed in the air for 1 h, this electrolyte still allows the stable charge–discharge cycling of MCMB‖NMC811 full-cells without degradation, which can largely simplify the manufacturing processes of LIBs. The ‘self-purifying-plus-passivation’ strategy opens a promising frontier for electrolyte engineering towards next-generation high-energy LIBs.

Graphical abstract: A self-purifying electrolyte enables high energy Li ion batteries

Supplementary files

Article information

Article type
Paper
Submitted
11 Feb 2022
Accepted
13 May 2022
First published
15 May 2022

Energy Environ. Sci., 2022,15, 3331-3342

A self-purifying electrolyte enables high energy Li ion batteries

D. Lu, X. Lei, S. Weng, R. Li, J. Li, L. Lv, H. Zhang, Y. Huang, J. Zhang, S. Zhang, L. Fan, X. Wang, L. Chen, G. Cui, D. Su and X. Fan, Energy Environ. Sci., 2022, 15, 3331 DOI: 10.1039/D2EE00483F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements