Issue 1, 2022

Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow

Abstract

The marine atmosphere of the Bay of Bengal (BoB) is prone to get impacted by anthropogenic aerosols from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA), particularly during the northeast monsoon (NEM). In this study, we quantify and characterize carbonaceous aerosols and their absorption properties collected in two cruise campaigns onboard ORV Sindhu Sadhana during the continental outflow period over the BoB. Aerosol samples were classified based on the air mass back trajectory analyses, wherein samples were impacted by the continental air parcel (CAP), marine air parcel (MAP), and mix of both (CAP + MAP). Significant variability in the PM10 mass concentration (in μg m−3) is found with a maximum value for MAP samples (75.5 ± 36.4) followed by CAP + MAP (58.5 ± 27.3) and CAP (58.5 ± 27.3). The OC/EC ratio (>2) and diagnostic tracers i.e. nss-K+/EC (0.2–0.96) and nss-K+/OC (0.11–1.32) along with the absorption angstrom exponent (AAE: 4.31–6.02) and MODIS (Moderate Resolution Imaging Spectroradiometer) derived fire counts suggest the dominance of biomass burning emission sources. A positive correlation between OC and EC (i.e. r = 0.86, 0.70, and 0.42 for CAP, MAP, and CAP + MAP, respectively) further confirmed the similar emission sources of carbonaceous species. Similarly, a significant correlation between estimated secondary organic carbon (SOC) and water-soluble organic carbon (WSOC; r = 0.99, 0.96, and 0.97 for CAP, MAP, and CAP + MAP, respectively) indicate their similar chemical nature as well as dominant contribution of SOC to WSOC. The absorption coefficient (babs-365) and mass absorption efficiency (MAEBrC-365) of the soluble fraction were estimated at 365 nm wherein, babs-365 showed a linear relationship with WSOC and nss-K+, signifying the contribution of water soluble brown carbon from biomass burning emissions. The estimated MAEBrC-365 (0.30–0.93 m2 g−1), during this study, was consistent with the earlier observations over the BoB, particularly during the continental outflow season.

Graphical abstract: Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow

Supplementary files

Article information

Article type
Paper
Submitted
17 Aug 2021
Accepted
18 Oct 2021
First published
20 Oct 2021

Environ. Sci.: Processes Impacts, 2022,24, 72-88

Carbonaceous aerosols and their light absorption properties over the Bay of Bengal during continental outflow

G. Nayak, A. Kumar, S. Bikkina, S. Tiwari, S. S. Sheteye and A. K. Sudheer, Environ. Sci.: Processes Impacts, 2022, 24, 72 DOI: 10.1039/D1EM00347J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements