Issue 11, 2022

Assessing the substrate specificity of a micropollutant degrading strain: generalist or specialist?

Abstract

Natural dissolved organic matter (DOM) can serve as an additional substrate for organic micropollutant (OMP) degrading bacteria, thus influencing OMP biodegradation in aquatic systems. DOM biodegradation depends on the OMP degrader's ability to grow on different DOM constituents, and on its capability to compete for DOM constituents against the rest of the resident aquatic microbial community. This study aimed to investigate the growth of a model OMP degrader strain, Novosphingobium sp. KN65.2 (assumed specialist), isolated for its ability to mineralize carbofuran, on thirteen DOM constituents; compare its metabolic capabilities to those of a common freshwater strain (Pseudomonas fluorescens sp. P17) (generalist); and to evaluate competition for specific compounds. Growth experiments were carried out in pure- and mixed culture batch experiments. The DOM constituents tested included aromatic amino acids and a range of phenolic acids (lignin derivatives). The OMP degrader could biodegrade approximately half of the tested compounds. It showed a high specialization for substrates containing a hydroxyl-group in the para-position of the primary aromatic ring substituent. However, its broad substrate range enabled the strain to grow on the same number of auxiliary substrates as the generalist. Moreover, the OMP degrader was able to successfully compete against the generalist for the biodegradation of one (4-hydroxybenzaldehyde) out of three substrates (4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, L-tyrosine), which were biodegraded by both strains. The study results provide insight on the substrate specificity of a model OMP degrader, which can inform development of modeling frameworks investigating the influence of DOM on OMP biodegradation.

Graphical abstract: Assessing the substrate specificity of a micropollutant degrading strain: generalist or specialist?

Supplementary files

Article information

Article type
Paper
Submitted
06 May 2022
Accepted
01 Oct 2022
First published
03 Oct 2022

Environ. Sci.: Processes Impacts, 2022,24, 2140-2152

Assessing the substrate specificity of a micropollutant degrading strain: generalist or specialist?

A. Schittich, U. S. McKnight, C. Stedmon and B. F. Smets, Environ. Sci.: Processes Impacts, 2022, 24, 2140 DOI: 10.1039/D2EM00197G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements