Tracing the sources and depositional history of mercury to coastal northeastern U.S. lakes†
Abstract
Mercury (Hg) deposition was reconstructed in sediment cores from lakes in two coastal U.S. National Parks: Acadia National Park (ANP) and Cape Cod National Seashore (CCNS), to fill an important spatial gap in Hg deposition records and to explore changing sources of Hg and processes affecting Hg accumulation in these coastal sites. Recent Hg deposition chronology was assessed using (1) a newly developed lead-210 (210Pb) based sediment age model which employs 7Be to constrain deposition and sediment mixing of 210Pb-excess, (2) coinciding Pb flux and isotope ratios (206Pb/207Pb), and (3) Hg isotope ratios and their response to changes in Hg flux. At both sites, Hg flux increased substantially from pre-1850 levels, with accumulation in ANP peaking in the 1970s, whereas in CCNS, Hg levels were highest in recent sediments. Negative values of δ202Hg and Δ199Hg indicated terrestrially-derived Hg was a major constituent of Hg flux to Sargent Mountain Pond, ANP, although recent decreases in Hg flux were in agreement with precipitation Hg records, indicating a rapid watershed response. By contrast, δ202Hg and Δ199Hg profiles in Long Pond, CNNS reflect direct Hg deposition, but disturbances in the sedimentary record were indicated by bomb fallout radionuclide inventories and by peaks in both Pb and Hg isotope depth profiles. These cores provided poor reconstructions of atmospheric deposition and reveal responses that are decoupled from emissions reduction due to complex post-depositional redistribution of atmospheric metals including Hg. The application of multiple tracers of Hg deposition provide insight into the sources and pathways governing Hg accumulation in these lakes.
- This article is part of the themed collection: Contaminant remediation and fate