Thermal decomposition mechanism and kinetics of perfluorooctanoic acid (PFOA) and other perfluorinated carboxylic acids: a theoretical study†
Abstract
Perfluorinated carboxylic acids (PFCAs), particularly perfluorooctanoic acid (PFOA), are broadly used for chemical synthesis and as surfactants, but they pose a serious threat to humans and wildlife because of toxicity concerns, environmental stability, and tendency to bioaccumulate. PFCA waste is commercially treated in incinerators, however, their exact degradation mechanisms are still unknown. In the present work, we report the decomposition mechanism and kinetics of straight-chain PFCAs using quantum chemistry and reaction rate theory calculations. Degradation mechanisms and associated kinetic parameters are determined for the complete series of straight-chain PFCAs from perfluorononanoic acid (C8F17COOH, C9) to fluoroformic acid (FCOOH, C1). Our results show that PFCA decomposition follows an analogous mechanism to perfluorinated sulfonic acids, where HF elimination from the acid head group produces a three membered ring intermediate, in this case a perfluorinated α-lactone. These perfluorinated α-lactones are short-lived intermediates that readily degrade into perfluorinated acyl fluorides and CO, thus shortening the perfluorinated chain by one C atom. Because perfluorinated acyl fluorides are known to hydrolyse to PFCAs, repeated cycles of carboxylic acid decomposition followed by acyl fluoride hydrolysis provides a mechanism for the complete mineralization of PFCAs to HF, CO, CO2, COF2, and CF2 during thermal decomposition in the presence of water vapor. These results provide a theoretical basis for future detailed chemical kinetic studies of incineration reactors and will assist in their design and optimisation so as to more efficiently decompose PFCAs and related waste.
- This article is part of the themed collection: Contaminant remediation and fate