Ion selective nano-mesh electrode for long-term continuous monitoring of wastewater quality fabricated using template-guided membrane immobilization†
Abstract
Ion selective electrode (ISE) sensors have been broadly applied for real-time in situ monitoring of ion concentrations in water environments. However, ISE sensors suffer from critical problems, such as ionophore leaching, water-penetration, poor electrochemical stability, and resulting short life spans. In this study, a template-guided membrane matrix immobilization strategy was pursued as a novel ISE sensor fabrication methodology to enhance its sensing characteristics and longevity. Specifically, nano-porous anodized aluminum oxide (AAO) was used as the template for an NH4+-specific ISE sensor. A nano-porous nickel mesh eventually replaced the template and formed a compact, high-surface juncture with the NH4+ ion-selective membrane matrix. The resulting template-guided nano-mesh ISE (TN-ISE) sensor displayed enhanced electrochemical stability (i.e., capacitance increased by 50%, reading drift reduced by 75%) when compared to a regular single-wall carbon nanotube (SW-CNT) ISE sensor used as the standard. The interface between the nano-mesh electrode and the ion selective membrane matrix was compact enough to prevent water influx at the electrode interface. This minimized ionophore leaching and increased the mechanical integrity of the TN-ISE sensor. The practical advantages of the novel sensor were validated via long-term (360 hours) tests in real wastewater, returning a small average error of 1.28% over this time. The results demonstrate the feasibility of the template-guided nano-mesh design and fabrication strategy toward ISEs for long-term continuous monitoring of water or wastewater quality.