Issue 3, 2022

Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO4/BiOBr/Pd heterojunction nanocomposite photocatalyst

Abstract

Polybrominated diphenyl ethers (PBDEs), previously incorporated in a wide variety of common products, can now be found throughout the environment. Because of their environmental persistence and the potential health hazards they pose to humans and wildlife, they have been added to the Stockholm Convention on Persistent Organic Pollutants, and they continue to be of significant concern. We report herein the first application of a nanocomposite catalyst consisting of a m-BiVO4/BiOBr heterojunction surface-decorated with Pd nanoparticles in the photocatalytic reductive debromination of PBDEs using visible light. Specifically, this system demonstrated both rapid and complete debromination of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47), with an exceedingly large initial pseudo-first-order rate constant of 1.33 min−1. Analysis of the reaction mechanism identified the stepwise degradation pathway to generate the final diphenyl ether product as well as the role of the alcohol-based sacrificial reagent. Such information provides routes towards new approaches for environmental remediation by identifying reaction pathways for common organic pollutants that remain challenging to degrade via sustainable methods.

Graphical abstract: Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO4/BiOBr/Pd heterojunction nanocomposite photocatalyst

Supplementary files

Article information

Article type
Paper
Submitted
07 Dec 2021
Accepted
13 Jan 2022
First published
26 Jan 2022

Environ. Sci.: Nano, 2022,9, 1106-1115

Author version available

Mechanistic analysis identifying reaction pathways for rapid reductive photodebromination of polybrominated diphenyl ethers using BiVO4/BiOBr/Pd heterojunction nanocomposite photocatalyst

E. B. Miller, E. M. Zahran, M. R. Knecht and L. G. Bachas, Environ. Sci.: Nano, 2022, 9, 1106 DOI: 10.1039/D1EN01128F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements