Sustainable catalytic oxidation of 1,3-butadiene over dispersedly assembled Ce0.027W0.02Mn0.054TiOx featuring synergistic redox cycles†
Abstract
The challenge of the difficult recovery of ubiquitous low-boiling point alkenes in industrial exhaust gas gives catalytic oxidation a vital role, which crucially needs developing cost-effective catalysts. Herein, seven Ti-based catalysts with varied introduction of trace W, Ce and Mn were fabricated and assembled for the oxidation of 1,3-butadiene at 150–300 °C. Ce0.027W0.02Mn0.054TiOx featuring multiple cations exhibited exceptional oxidation activity. Based on comprehensive experiments and crystal cell theoretical analysis, the excellent catalytic activity was majorly governed by remarkably synergistic redox cycles among components: Mn3+ + Ti4+ ↔ Mn4+ + Ti3+, W6+ + Ti3+ ↔ W5+ + Ti4+, W6+ + Mn3+ ↔ W5+ + Mn4+, W5+ + Ce4+ ↔ W6+ + Ce3+, and Ce3+ + Mn4+ ↔ Ce4+ + Mn3+. The electron transfer between the catalyst interior and interface endowed Ce0.027W0.02Mn0.054TiOx rich active oxygen species with a sustainable 100% CO2 yield and certain anti-water interference. By combining the in situ dynamic oxidation process of 1,3-butadiene, a catalytic oxidation mechanism driven by synergistic redox cycles was proposed. The design of a multiple-cation catalyst featuring robust synergistic interactions could provide a new insight into the control of typical light alkenes.