Issue 12, 2022

Full-scale aerobic granular sludge for municipal wastewater treatment – granule formation, microbial succession, and process performance

Abstract

Aerobic granular sludge (AGS) plants have gained growing interest and application due to their low energy demand, small footprint, and low operational costs. However, the fulfilment of strict discharge limits for nitrogen and phosphorus, vast seasonal temperature variations, and large peaks in influent flows may pose challenges to the implementation of AGS. Moreover, the knowledge about microbial community assembly and process performance under varying environmental conditions in full-scale reactors is still limited. In this study, the first implementation of the AGS process in the Nordic countries was assessed. In two full-scale AGS reactors with different seeding sludges, the start-up was associated with rapid changes in microbial community composition in both, but only successful granulation in one. As a consequence, the non-granulated reactor was eventually reseeded with biomass from the better granulated reactor. This resulted in a convergence of the microbial communities in the two reactors with the maintenance of stable sludge concentrations (6–8 g L−1) with large granules (50–80% with diameter >2 mm) and fast settling of biomass (SVI30/SVI10 of 0.9–1). Immigration from the influent wastewater was a minor factor affecting the microbial community once the granules had formed, while the seasonal variations in environmental factors were identified as important. Key guilds of AOB (Nitrosomonas), NOB (mainly Ca. Nitrotoga), PAOs (mainly Tetrasphaera), and GAOs (mainly Ca. Competibacter) varied considerably in abundance throughout the study period. After 15 months, stable organic matter, nitrogen, and phosphorus removal were attained with low effluent concentrations. During the start-up, the BOD7/N ratio, influent flow, and temperature were important factors influencing the performance of the AGS.

Graphical abstract: Full-scale aerobic granular sludge for municipal wastewater treatment – granule formation, microbial succession, and process performance

Supplementary files

Article information

Article type
Paper
Submitted
22 Aug 2022
Accepted
04 Nov 2022
First published
04 Nov 2022
This article is Open Access
Creative Commons BY license

Environ. Sci.: Water Res. Technol., 2022,8, 3138-3154

Full-scale aerobic granular sludge for municipal wastewater treatment – granule formation, microbial succession, and process performance

J. Ekholm, F. Persson, M. de Blois, O. Modin, M. Pronk, M. C. M. van Loosdrecht, C. Suarez, D. J. I. Gustavsson and B. Wilén, Environ. Sci.: Water Res. Technol., 2022, 8, 3138 DOI: 10.1039/D2EW00653G

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements