Citrus depressa Hayata peel ameliorates nonalcoholic fatty liver and modulates the activity of hepatic drug-metabolizing enzymes and transporters in rats fed a high-fat diet†
Abstract
Citrus depressa Hayata is a small, green citrus fruit native to Taiwan and Japan. Citrus peel contains polymethoxylated flavones, including nobiletin and tangeretin, and may exhibit strong antioxidant and anti-inflammatory activities. A preliminary study revealed that Citrus depressa Hayata peel (CDHP) ethanolic extract reduced fat accumulation and the concentration of reactive oxygen species in human HepG2 cells exposed to oleic acid. The effects of CDHP on the activity of hepatic drug-metabolizing enzymes and membrane transporters in high-fat (HF) diet-induced fatty liver were investigated. Male rats were fed a low-fat diet, a HF diet, and a HF diet containing 4% CDHP for 11 weeks. The low-fat and HF diet respectively contained 13.5% and 38.1% of daily total calories from dietary fat. CDHP supplementation reduced the HF diet-induced accumulation of triglycerides in the liver and lowered hepatic fatty acid synthase activity. Higher faecal excretions of cholesterol, triglycerides, and total bile acids were observed after CDHP treatment. CDHP lowered the HF diet-induced increase in the mRNA expressions of nuclear factor erythroid 2-related factor 2, aryl hydrocarbon receptor, pregnane X receptor, and peroxisome proliferator-activated receptor-α and the activities of cytochrome P-450 (CYP)1A1, 1A2, 2B, and 2E1. However, increased hepatic CYP3A activity was observed in rats fed the HF diet containing CDHP. A higher hepatic multidrug resistance-associated protein 2 level was observed after CDHP treatment. After CDHP administration (1 g per kg body weight) for 1 h, nobiletin was found in plasma and various tissues and was abundant in the liver. An in vitro study revealed that the activity of various CYP enzymes in liver microsomes was inhibited by CDHP ethanolic extract and nobiletin, with IC50 values ranging from 18.5 to 54.4 μg ml−1 and from 13.0 to 33.2 μM, respectively. The results of this study suggest that CDHP might reduce hepatic steatosis and alter drug-metabolizing enzymes and transporters in HF diet-induced nonalcoholic fatty liver diseases.