Issue 6, 2022

Allicin suppressed Escherichia coli-induced urinary tract infections by a novel MALT1/NF-κB pathway

Abstract

Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a famous food and condiment, garlic (Allium sativum L.) is widely used in medicine, but its exact key targets in UTIs remain elusive. To identify the major active ingredient of garlic and its molecular target against UTIs, a network pharmacology analysis was carried out, and allicin was revealed to be a key active component in garlic acting on UTIs. By molecular docking, allicin showed a good binding affinity to mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1). The possible regulatory mechanisms of allicin against UTIs were based on the modules of immune and inflammatory responses mainly through AKT/NF-κB signaling. Next, an E. coli-stimulated human uroepithelial cell (HUC) model was established to confirm the anti-infective effect of allicin. The results showed that allicin could significantly inhibit the upregulation of MALT1, the AKT/NF-κB pathway, and cytokines (IL-6 and IL-1β). HUCs pretreated with the PI3K inhibitor or transfected with MALT-siRNA also partly suppressed the activation of the AKT/NF-κB pathway and cytokines. Furthermore, by establishing the PCA algorithm to evaluate the therapeutic score, allicin was proved to achieve the optimal therapeutic effects compared with the PI3K inhibitor and siRNA-MALT1. Moreover, in rats with an E. coli-induced UTI model, allicin significantly alleviated the infection and up-regulation of MALT1 expression in the bladders, a marked increase in the bacterial load of urine, and deviations in serum biochemical parameters. In conclusion, allicin exerts anti-infective effects in UTIs mainly via the MALT1/NF-κB axis or AKT/NF-κB pathway, which provides a theoretical basis for understanding the function of allicin against UTIs and facilitates its clinical application.

Graphical abstract: Allicin suppressed Escherichia coli-induced urinary tract infections by a novel MALT1/NF-κB pathway

Supplementary files

Article information

Article type
Paper
Submitted
14 Nov 2021
Accepted
20 Jan 2022
First published
28 Jan 2022

Food Funct., 2022,13, 3495-3511

Allicin suppressed Escherichia coli-induced urinary tract infections by a novel MALT1/NF-κB pathway

Z. Chang, L. An, Z. He, Y. Zhang, S. Li, M. Lei, P. Xu, Y. Lai, Z. Jiang, Y. Huang, X. Duan and W. Wu, Food Funct., 2022, 13, 3495 DOI: 10.1039/D1FO03853B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements