Responses of human gut microbiota abundance and amino acid metabolism in vitro to berberine
Abstract
The intestine is a potential location for berberine (BBR) to exert its therapeutic effects, but the understanding of the influences of BBR on the gut microbiota is limited. Through in vitro fermentation of human intestinal microbiota, we investigated the effects of BBR on microbiota composition and metabolism. The result indicated that BBR reduced the production of acetic acid and propionic acid and had no effect on the content of butyric acid. Analysis of the 16S rRNA gene-based community revealed that BBR increased the abundance of Faecalibacterium and decreased the abundance of Bifidobacterium, Streptococcus and Enterococcus. Through metabolomics analysis, BBR treatment regulated various amino acid metabolism pathways of intestinal microbiota, especially tyrosine, serine and L-glutamate. Our study presented direct impacts of BBR on the intestinal microbiota, which provided the probable targets of the therapies by BBR and supported further exploration of the underlying mechanisms.