Issue 9, 2022

Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides

Abstract

The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-β-Glcp-1 → 4-β-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-β-Galp-1 → 2-β-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.

Graphical abstract: Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides

Supplementary files

Article information

Article type
Paper
Submitted
29 Nov 2021
Accepted
28 Mar 2022
First published
07 Apr 2022

Food Funct., 2022,13, 5287-5298

Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides

T. Hu, H. Wu, Y. Yu, Y. Xu, E. Li, S. Liao, P. Wen and Y. Zou, Food Funct., 2022, 13, 5287 DOI: 10.1039/D1FO04048K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements