Issue 21, 2022

Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco-2 cells

Abstract

L. plantarum 1.0386 repairs intestinal epithelial tight junction injury, and the present study was designed to further explore the role of its postbiotics, including the surface protein (1.0386-Slp), peptidoglycan (1.0386-PG) and exopolysaccharide (1.0386-EPS). The results showed that they all could improve the lipopolysaccharide (LPS)-induced decrease of transepithelial electrical resistance, increase of paracellular permeability, release of inflammatory factors, and disruption of tight junctions in Caco-2 cells, and the repairing effect of 1.0386-Slp was better than those of 1.0386-PG and 1.0386-EPS, and was similar to that of L. plantarum 1.0386. Moreover, either L. plantarum 1.0386 or 1.0386-Slp intervention significantly increased the expression of miR-200c inhibited by LPS, while the miR-200c inhibitor weakened the ability of 1.0386-Slp to promote the expression of tight junction proteins (ZO-1, occludin and claudin-1). Meanwhile, 1.0386-Slp restored the distribution of tight junction proteins and inhibited the increase of NF-κB p65, MLC and pMLC protein expression evoked by LPS. However, the addition of miR-200c inhibitors or mimics weakened or strengthened the down-regulation of MLCK-MLC pathway protein expression by 1.0386-Slp, respectively. In summary, 1.0386-Slp may be the main efficacy component of L. plantarum 1.0386, and miR-200c may be involved in the process of 1.0386-Slp inhibiting the MLCK pathway to repair intestinal epithelial tight junction injury.

Graphical abstract: Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco-2 cells

Article information

Article type
Paper
Submitted
01 Jan 2022
Accepted
12 Jul 2022
First published
22 Jul 2022

Food Funct., 2022,13, 11008-11020

Postbiotics derived from Lactobacillus plantarum 1.0386 ameliorate lipopolysaccharide-induced tight junction injury via MicroRNA-200c-3p mediated activation of the MLCK-MLC pathway in Caco-2 cells

X. Zhang, Y. Li, C. Zhang, H. Chi, C. Liu, A. Li and W. Yu, Food Funct., 2022, 13, 11008 DOI: 10.1039/D2FO00001F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements