An α type gluco-oligosaccharide from brown algae Laminaria japonica stimulated the growth of lactic acid bacteria encoding specific ABC transport system components†
Abstract
Glucan is the most widely distributed glycan. Many probiotics such as lactic acid bacteria (LAB) encoded corresponding hydrolytic enzymes, which could use these glucans as energy substances. Brown alga is rich in glucan and has high edible and medicinal value, but research on its regulation to probiotics is not detailed enough. In this study, we determined a novel neutral α type gluco-oligosaccharide from the brown alga Laminaria japonica with a degree of polymerization (DP) of 2–8 and a structure that mainly consists of α-(1→4)-linked glycosidic bonds called Laminaria japonica gluco-oligosaccharide (LJGO). Fermentation in vitro and gene–phenotype correlation analyses revealed that LJGO selectively stimulated the growth of the LAB strain encoding a specific ATP-binding cassette (ABC) transport system in a GH13 gene cluster, with apparent differences among 14 tested species. Comparative genomics further revealed that this transport system is species-specific, implying a potential contribution to species evolution. Transcriptomic analysis based on LAB strains cultured on LJGO and 1H-NMR findings of LJGO residues after strain utilization showed that the GH13 gene cluster contains functional LAB genes involved in LJGO utilization. Further verification by gene knockout studies is needed to expand our findings.