Issue 23, 2022

Emulsification by vitamin E TPGS or Quillaja extract enhanced absorption of berberine without affecting its metabolism in humans

Abstract

Berberine is widely used for the prevention of cancers and diabetes. However, the absorption rate of berberine is less than 1% in humans. The objective of this research was to determine whether emulsification improves the absorption and affects the metabolism of orally ingested berberine. Twelve healthy subjects, both men and women, received 800 mg berberine in a powder or emulsified form by vitamin E TPGS or Quillaja extract using a randomized crossover design. Blood samples were collected 12 hours after a dose. Berberine and its metabolites in plasma were analyzed with and without hydrolysis by glucuronidase and sulfatase on UHPLC-MS/MS. The area under the curve (AUC0–12 h) and peak plasma concentration (Cmax) of berberine was 6.7 nM h and 0.9 nM in participants who received berberine powder. They were increased to 12.6 nM h and 2.0 nM by TPGS emulsification and 28.0 nM h and 5.1 nM by Quillaja extract emulsification, respectively. Berberrubine and demethyleneberberine were detected as major phase-1 metabolites of berberine. The AUC0–12 of both free and total berberrubine was significantly increased by TPGS and Quillaja extract. Emulsification by Quillaja extract was more effective than TPGS to increase the plasma concentrations of free and total demethyleneberberine. However, the ratios of phase-1 metabolites and ratios of phase-2 conjugates were not affected by emulsification. Absorption increases of berberine by TPGS or Quillaja extract emulsification may lead to enhanced bioactivity in humans.

Graphical abstract: Emulsification by vitamin E TPGS or Quillaja extract enhanced absorption of berberine without affecting its metabolism in humans

Supplementary files

Article information

Article type
Paper
Submitted
03 Aug 2022
Accepted
22 Oct 2022
First published
24 Oct 2022

Food Funct., 2022,13, 12135-12143

Emulsification by vitamin E TPGS or Quillaja extract enhanced absorption of berberine without affecting its metabolism in humans

Y. Yagiz, G. P. Wang and L. Gu, Food Funct., 2022, 13, 12135 DOI: 10.1039/D2FO02288E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements