Issue 10, 2022

In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic

Abstract

Plastic waste is currently produced at an alarmingly high rate, nearing 400 Mt per year. The accumulation of plastics in the environment is growing rapidly, yet our knowledge of their persistence is very limited. Efficient and affordable dissolution and chemical upcycling of plastic wastes are also a significant hurdle in the conversion of plastic polymers to value-added chemicals, and finding a suitable solvent is also a major concern. Ionic liquids (ILs) have recently demonstrated their ability to dissolve and convert polyethylene terephthalate (PET) into valuable products. However, identifying an optimal IL from the large number of anion and cation combinations possible is quite challenging. To address this issue, the COSMO-RS (COnductor-like Screening MOdel for Real Solvents) model has emerged as a reliable computational tool that can screen numerous ILs based on the different thermodynamic properties that are needed for polymer dissolution. The current study demonstrates the dissolution behavior of plastic wastes in ILs using the COSMO-RS model. In this study, 99 cations and 95 anions were chosen and combined to form 9405 ILs, which were evaluated by predicting logarithmic activity coefficient (ln(γ)) and excess enthalpies (HE) of typical plastic wastes (PET, polystyrene, polypropylene, and polyvinylchloride). Based on the COSMO-RS predicted thermodynamic properties (ln(γ) and HE), anions such as acetate, formate, glycinate, and N-methylcarbamate in combination with the cations like superbase, ammonium, and pyrrolidinium are predicted to be suitable solvents for plastic dissolution. The predicted ln(γ) and HE results are further validated with the experimental results and the predicted thermodynamic properties and experimental results are in good alignment. An excess enthalpy calculation demonstrated that strong hydrogen bond interactions between the polymer and the IL are vital factors for efficient dissolution to occur, with the anion and the cation of the IL having a similar effect on the process.

Graphical abstract: In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic

Supplementary files

Article information

Article type
Paper
Submitted
22 Sep 2021
Accepted
13 Dec 2021
First published
10 May 2022
This article is Open Access
Creative Commons BY-NC license

Green Chem., 2022,24, 4140-4152

In silico COSMO-RS predictive screening of ionic liquids for the dissolution of plastic

M. Mohan, J. D. Keasling, B. A. Simmons and S. Singh, Green Chem., 2022, 24, 4140 DOI: 10.1039/D1GC03464B

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. You can use material from this article in other publications, without requesting further permission from the RSC, provided that the correct acknowledgement is given and it is not used for commercial purposes.

To request permission to reproduce material from this article in a commercial publication, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party commercial publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements