Photothermal strategy for the highly efficient conversion of glucose into lactic acid at low temperatures over a hybrid multifunctional multi-walled carbon nanotube/layered double hydroxide catalyst†
Abstract
The conversion of carbohydrates into lactic acid has attracted increasing attention owing to the broad applications of lactic acid. However, the current methods of thermochemical conversion commonly suffer from limited selectivity or the need for harsh conditions. Herein, a light-driven system of highly selective conversion of glucose into lactic acid at low temperatures was developed. By constructing a hybrid multifunctional multi-walled carbon nanotube/layered double hydroxide composite catalyst (CNT/LDHs), the highest lactic acid yield of 88.6% with 90.0% selectivity was achieved. The performance of CNT/LDHs for lactic acid production from glucose is attributed to the following factors: (i) CNTs generate a strong heating center under irradiation, providing heat for converting glucose into lactic acid; (ii) LDHs catalyze glucose isomerization, in which the photoinduced OVs (Lewis acid) in LDHs under irradiation further improve the catalytic activity; and (iii) in a heterogeneous–homogeneous synergistically catalytic system (LDHs-OH−), OH− ions are concentrated in LDHs, forming strong base sites to catalyze subsequent cascade reactions.